Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Protocols
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utilizing Zebrafish Embryos to Reveal Disruptions in Dorsoventral Patterning

Authors: Dasgupta, Subham; Cheng, Vanessa; Volz, David C;

Utilizing Zebrafish Embryos to Reveal Disruptions in Dorsoventral Patterning

Abstract

AbstractDorsoventral (DV) patterning is a key landmark of embryonic development that is primarily regulated by bone morphogenetic protein (BMP) signaling. Disruption of DV patterning can result in downstream effects on cell specification and organogenesis. Zebrafish embryos have been extensively used to understand signaling pathways that regulate DV patterning because zebrafish embryos develop ex utero and, in contrast to mammalian embryos, which develop in utero, can be observed in real time using brightfield and fluorescence microscopy. Embryos with disrupted DV patterning are either dorsalized or ventralized, with lack of development of head or trunk/tail structures, respectively. Although these phenotypes are typically accompanied by effects on BMP signaling, exceptions exist where some drugs or environmental chemicals can disrupt DV patterning in the absence of effects on BMP signaling. Therefore, assessments of DV patterning should be accompanied by BMP signaling–specific readouts to confirm the role of BMP disruption. Here, we describe an exposure paradigm and steps for phenotyping zebrafish embryos for two types of DV defects, dorsalization and ventralization, with a range of severities. In addition, we describe a strategy for whole‐mount immunohistochemistry of zebrafish embryos with an antibody specific for phospho‐SMAD 1/5/9 (pSMAD 1/5/9), as disruption in pSMAD 1/5/9 localization is indicative of an effect on BMP signaling. Taken together, these protocols describe an initial strategy for evaluating DV patterning defects under various experimental conditions and confirming BMP‐mediated DV patterning disruptions, which can be followed by additional studies that aim to uncover mechanisms leading to these adverse phenotypes. © 2021 Wiley Periodicals LLC.This article was corrected on 2 August 2022. See the end of the full text for details.Basic Protocol 1: Phenotyping for dorsalization and ventralizationBasic Protocol 2: Whole‐mount immunohistochemistry with antibody to phospho‐SMAD 1/5/9

Country
United States
Keywords

Pediatric, BMP signaling, 1.1 Normal biological development and functioning, Biological Sciences, Zebrafish Proteins, Underpinning research, immunohistochemistry, Bone Morphogenetic Proteins, zebrafish embryos, phospho-SMAD, Animals, Biochemistry and Cell Biology, Generic health relevance, dorsoventral patterning, Zebrafish, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green