Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemPhysChem
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemPhysChem
Article . 2021
versions View all 3 versions
addClaim

Anion‐Anion Complexes Established between Aspartate Dimers

Authors: Matias O. Miranda; Darío J. R. Duarte; Ibon Alkorta;

Anion‐Anion Complexes Established between Aspartate Dimers

Abstract

AbstractStable dimers aspartate‐aspartate have been studied in aqueous and gas phase through theoretical simulations. The polarizable continuum model (PCM) has been applied to simulate the effect of the hydration on monomers and complexes. The quantum theory of atoms in molecules (QTAIM) and the interacting quantum atoms (IQA) scheme has been used to inquire into if, in the aqueous phase, individual hydrogen bonds have attractive electrostatic components. In all cases a spontaneous formation of the complexes in the aqueous phase are observed, while in the gas phase a considerable energy barrier must be overcome (between 100.8 to 263.2 kJ mol−1). The intermolecular distance at which this barrier is indicates when the hydrogen‐bond interactions begin to take importance between the dimers and the corresponding molecular recognition among them. The IQA analysis shows that in aqueous phase, the hydrogen bonds N−H⋅⋅⋅O are mainly electrostatic in nature with a certain covalent character which increases linearly with the decrease of internuclear distances H⋅⋅⋅O. The H⋅⋅⋅H interactions observed are stabilizing and they are mainly quantum in nature.

Keywords

Hydrogen bond, Anions, Density functional calculations, Aspartic Acid, QTAIM, Anion-anion interaction, Quantum Theory, Hydrogen Bonding, Dimerization, Covalence degree

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 22
    download downloads 16
  • 22
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
22
Top 10%
Average
Top 10%
22
16
Green