
AbstractWe report here on the interaction of the fluorescent dye rhodamine B (RB) with single‐walled carbon nanotubes (SWCNTs). We observe that SWCNTs statically quench the fluorescence of RB by forming a stable ground state complex. Careful spectroscopic analysis indicates that the complex formation is efficient mainly with certain chiral forms. We propose three different applications utilizing this quenching mechanism and the associated complexation. Firstly, the quenching efficiency can be utilized as a measure for the characterization and quantification of nanotube dispersions. Secondly, we demonstrate that the specific complexation of RB can be deployed to enrich certain chiral forms in suspension. Finally, we show that RB can be effectively used to visualize nanotubes deposited on substrates.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
