
pmid: 16607662
AbstractA selection of recent theoretical and experimental studies on electrolytic hydrogen evolution is presented. It is demonstrated with well‐defined model surfaces that this reaction is a very structure‐sensitive process. Crystallographic orientation, defect density and surface composition are parameters that determine the local geometric and electronic surface structure, and are thus crucial for the electrocatalytic activity as characterised by the exchange current density. The observed trends can be understood within a recent theory by J. K. Nørskov et al., which is based on density functional calculations and which emphasises the impact of hydrogen chemisorption energies on the reaction rate, that is, on the exchange current density. The particular electrocatalytic activities of ultrathin metal films and of nanostructures are addressed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 252 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
