
pmid: 14652993
AbstractSince the discovery of carbon nanotubes by Iijima in 1991, various carbon nanotubes with either a single‐ or multilayered graphene cylinder(s) have been produced, along with their noncarbon counterparts (for example, inorganic and polymer nanotubes). These nanostructured materials often possess size‐dependent properties and show new phenomena related to the nanosize confinement of the charge carriers inside, which leads to the possibility of developing new materials with useful properties and advanced devices with desirable features for a wide range of applications. In particular, carbon nanotubes have been shown to exhibit superior properties attractive for various potential applications, ranging from their use as novel electron emitters in flat‐panel displays to electrodes in electrochemical sensors. For many of the applications, it is highly desirable to have aligned/patterned forms of carbon nanotubes so that their structure/property can be easily assessed and so that they can be effectively incorporated into devices. In this Review, we present an overview on the development of aligned and micropatterned nanotubes, with an emphasis on carbon nanotubes.
Patterning, Photolithography, Nanotubes, Soft-lithography, Self-assembly, Alignment, 620
Patterning, Photolithography, Nanotubes, Soft-lithography, Self-assembly, Alignment, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 186 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
