Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Concurrency and Comp...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Concurrency and Computation Practice and Experience
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Mobile crowdsourcing: framework, challenges, and solutions

Authors: Yufeng Wang 0001; Xueyu Jia; Qun Jin; Jianhua Ma 0002;

Mobile crowdsourcing: framework, challenges, and solutions

Abstract

SummaryCrowdsourcing is the generalized act of outsourcing tasks, traditionally performed by an employee or contractor, to a large group of Internet population through an open call. With the great development of smartphones with rich built‐in sensors and multiple ratio interfaces, mixing smartphone‐based mobile technologies and crowdsourcing offers significant flexibilities and leads to a new paradigm called mobile crowdsourcing (MCS), which can be fully explored for real‐time and location‐sensitive crowdsourced tasks. In this paper, we present a taxonomy for the MCS applications, which are explicitly divided as using human as sensors, and exploiting the wisdom of crowd (i.e., human intelligence). Moreover, two paradigms for mobilizing users in MCS are outlined: direct mode and word of mouth mode. A comprehensive MCS framework and typical workflow of MCS applications are proposed, which consist of nine functional modules, pertaining to three stakeholders in MCS: crowdsourcer, crowdworkers, and crowdsourcing platform. Then, we elaborate the MCS challenges including task management, incentives, security and privacy, and quality control, and summarize the corresponding solutions. Especially, from the viewpoints of various stakeholders, we propose the desired properties that an ideal MCS system should satisfy. The primary goal of this paper is to comprehensively classify and provide a summary on MCS framework, challenges, and possible solutions to highlight the MCS related research topics and facilitate to develop and deploy interesting MCS applications. Copyright © 2016 John Wiley & Sons, Ltd.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!