
doi: 10.1002/cpe.1689
AbstractQueries to Web search engines are usually short and ambiguous, which provides insufficient information needs of users for effectively retrieving relevant Web pages. To address this problem, query suggestion is implemented by most search engines. However, existing methods do not leverage the contradiction between accuracy and computation complexity appropriately (e.g. Google's ‘Search related to’ and Yahoo's ‘Also Try’). In this paper, the recommended words are extracted from the search results of the query, which guarantees the real time of query suggestion properly. A scheme for ranking words based on semantic similarity presents a list of words as the query suggestion results, which ensures the accuracy of query suggestion. Moreover, the experimental results show that the proposed method significantly improves the quality of query suggestion over some popular Web search engines (e.g. Google and Yahoo). Finally, an offline experiment that compares the accuracy of snippets in capturing the number of words in a document is performed, which increases the confidence of the method proposed by the paper. Copyright © 2010 John Wiley & Sons, Ltd.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
