Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Concurrency and Comp...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Concurrency and Computation Practice and Experience
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Multiversion concurrency control for the generalized search tree

Authors: Walter Binder; Adina D. Mosincat; Samuel Spycher; Ion Constantinescu; Boi Faltings;

Multiversion concurrency control for the generalized search tree

Abstract

AbstractMany read‐intensive systems where fast access to data is more important than the rate at which data can change make use of multidimensional index structures, like the generalized search tree (GiST). Although in these systems the indexed data are rarely updated and read access is highly concurrent, the existing concurrency control mechanisms for multidimensional index structures are based on locking techniques, which cause significant overhead. In this article we present the multiversion‐GiST (MVGiST), an in‐memory mechanism that extends the GiST with multiversion concurrency control. The MVGiST enables lock‐free read access and ensures a consistent view of the index structure throughout a reader's series of queries, by creating lightweight, read‐only versions of the GiST that share unchanging nodes among themselves. An example of a system with high read to write ratio, where providing wait‐free queries is of utmost importance, is a large‐scale directory that indexes web services according to their input and output parameters. A performance evaluation shows that for low update rates, the MVGiST significantly improves scalability w.r.t. the number of concurrent read accesses when compared with a traditional, locking‐based concurrency control mechanism. We propose a technique to control memory consumption and confirm through our evaluation that the MVGiST efficiently manages memory. Copyright © 2009 John Wiley & Sons, Ltd.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!