
doi: 10.1002/cpa.20361
AbstractWe establish a global well‐posedness of mild solutions to the three‐dimensional, incompressible Navier‐Stokes equations if the initial data are in the space ${\cal{X}}^{-1}$ defined by \input amssym ${\cal{X}}^{‐1} = \{f \in {\cal{D}}^\prime(R^3): \int_{{\Bbb{R}}^3}|\xi|^{‐1}|\widehat{f}|d\xi < \infty\}$ and if the norms of the initial data in ${\cal{X}}^{-1}$ are bounded exactly by the viscosity coefficient μ. © 2010 Wiley Periodicals, Inc.
Navier-Stokes equations for incompressible viscous fluids, Navier-Stokes equations
Navier-Stokes equations for incompressible viscous fluids, Navier-Stokes equations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 140 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
