Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laminar organization of frequency‐defined local axons within and between the inferior colliculi of the guinea pig

Authors: Jan G. Bjaalie; Manuel S. Malmierca; Adrian Rees; F. E. N. Le Beau;

Laminar organization of frequency‐defined local axons within and between the inferior colliculi of the guinea pig

Abstract

AbstractWe present a comprehensive description of the local (intrinsic and commissural) connections in the central nucleus of the inferior colliculi (CNICs) in guinea pig. Focal injections of the anterograde tracer biocytin were made into physiologically identified loci of the CNIC and the spatial organisation of the labeled fibres was revealed with computer‐assisted threedimensional (3‐D) reconstruction.The intrinsic fibres form a series of V‐shaped laminar plexuses composed of fibres bearing both terminal and en passant boutons. Each laminar plexus has a central wing located in the CNIC that extends into the dorsal cortex and an external wing located in the external cortex. The edge where the two wings intersect delimits the lateral border of the central nucleus with the external cortex. The density of labeled terminals was consistently lower in the cortices than in the CNIC. The laminar plexus connects points of similar frequency within the CNIC. Seen in 3‐D, the location, orientation, shape, and area of the laminar plexus vary as a function of best frequency. The commissural fibres ending in the contralateral IC to the injection also form a laminar plexus which is symmetrical to the ipsilateral plexus. Electrolytic lesions placed in the contralateral IC at sites with best frequencies corresponding to those of the injection coincided with the terminals of the commissural fibres in most instances. Possible patterns for the organisation of these connections (point‐to‐point and diverging) are discussed.Three systems of peripheral axons to the laminar plexus are described: parallel, oblique, and perpendicular to the central wing. The novel parallel system has terminals in both ICs that run parallel to the central wing. It might constitute the anatomical basis for across‐frequency interactions. The oblique and perpendicular systems are fibres of passage projecting to the commissure and brachium of the IC, respectively. © 1995 Wiley‐Liss, Inc.

Keywords

Male, Acoustic Stimulation, Lysine, Guinea Pigs, Image Processing, Computer-Assisted, Animals, Female, Axons, Inferior Colliculi

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    186
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
186
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!