Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 1976 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A re‐examination of anatomical plasticity in the rat retina

Authors: G A, Chernenko; R W, West;

A re‐examination of anatomical plasticity in the rat retina

Abstract

AbstractPrevious investigators have reported an increase in numbers of amacrine synapses in the inner plexiform layer (IPL) of the rat retina following light deprivation, and an increase in amacrine along with a decrease in bipolar synapses following light damage. Since there are several points of disagreement between the published reports on this subject we undertook a more detailed study of the effects of light deprivation and light damage on the retina.Four groups of eight male albino rat pups (14 days old) were raised for eight weeks under different conditions: (1) unsutured, bright light reared (UB); (2) bilaterally lid‐sutured, bright light reared (SB); (3) unsutured, low light reared (UL); and (4) bilaterally lid‐sutured, dark reared (SD). The intensity of the light given the UL group was equated with that striking the corneas of the SB group.Light microscopy showed that the retinas of the SB as well as the UB groups had almost complete degeneration of the outer retinal layers, indicating that even low intensity light, when continuous, causes severe retinal damage. The SD group was thicker in many of the retinal layers compared to the UL (control) group.Electron microscopy revealed that there were no significant changes in the incidences of any type of synapse in the IPL following light deprivation or light damage when averaged over total depth. This is in contradiction to the reports of other investigators. However, when the IPL was analyzed by levels, the incidence of amacrine‐ganglion synapses was significantly greater (p < 0.05) in groups UB and SD, but only in the outer third of the IPL. Thus, extensive postnatal plasticity of IPL synapses in the rat retina did not occur under our experimental conditions. We found, at best, only limited effects which were confined to the amacrine‐ganglion synapses.

Related Organizations
Keywords

Male, Light, Synapses, Animals, Cell Count, Sensory Deprivation, Retina, Vision, Ocular, Rats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!