Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Compa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Divergent and point‐to‐point connections in the commissural pathway between the inferior colliculi

Authors: Malmierca MS; Hernández O; Antunes FM; Rees A;

Divergent and point‐to‐point connections in the commissural pathway between the inferior colliculi

Abstract

AbstractThe commissure of the inferior colliculus interconnects the left and right sides of the auditory midbrain and provides the final opportunity for interaction between the two sides of the auditory pathway at the subcortical level. Although the functional properties of the commissure are beginning to be revealed, the topographical organization of its connections is unknown. A combination of neuroanatomical tracing studies, 3D reconstruction, and neuronal density maps was used to study the commissural connections in rat. The results demonstrate that commissural neurons in the central nucleus of the inferior colliculus send a divergent projection to the equivalent frequency‐band laminae in the central nucleus and dorsal and lateral cortices on the opposite side. The density of this projection, however, is weighted toward a point that matches the position of the tracer injection; consistent with a point‐to‐point emphasis in the wiring pattern. In the dorsal cortex of the inferior colliculus there may be two populations of neurons that project across the commissure, one projecting exclusively to the frequency‐band laminae in the central nucleus and the other projecting diffusely to the dorsal cortex. Neurons in the lateral cortex of the inferior colliculus make only a very weak contribution to the commissural pathway. The point‐to‐point pattern of connections permits interactions between specific regions of corresponding frequency‐band laminae, whereas the divergent projection pattern could subserve integration across the lamina. J. Comp. Neurol. 514:226–239, 2009. © 2009 Wiley‐Liss, Inc.

Related Organizations
Keywords

Male, Neurons, Photomicrography, Auditory Pathways, Article, Inferior Colliculi, Rats, Imaging, Three-Dimensional, Animals, Female, Rats, Long-Evans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Green
bronze