Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Organization and origin of the connection from the inferior to the superior colliculi in the rat

Authors: Gontzal, García Del Caño; Inmaculada, Gerrikagoitia; Amaya, Alonso-Cabria; Luis, Martínez-Millán;

Organization and origin of the connection from the inferior to the superior colliculi in the rat

Abstract

AbstractThe inferior colliculus (IC) is the main ascending auditory relay station prior to the superior colliculus (SC). The morphology and origin of the connection from inferior to superior colliculus (I‐SC) was analyzed both by anterograde and retrograde tracing. Irrespective of the subregion of the IC in which they originate, the terminal fields of these connections formed two main tiers in the SC. While the dorsal one primarily involved the stratum opticum and the stratum griseum intermediale, the ventral one innervated the deep strata, although some fibers did connect these tiers. While the dorsal tier occupied almost the whole extension of the SC, the ventral one was mostly confined to its caudomedial quadrant. The fiber density in these tiers decreased gradually in a rostral gradient and the terminal fields became denser as the anterograde tracer at the injection site was distributed more externally in the cortex of the IC. Retrograde tracing confirmed this result, although it did not reveal any topographic ordering for the I‐SC pathway. Most presynaptic boutons of the I‐SC terminal field were located either inside or close to the patches of acetylcholinesterase activity. Together with previous anatomical and physiological studies, our results indicate that the I‐SC connection relays behaviorally relevant information for sensory‐motor processing. Our observation that this pathway terminates in regions of the superior colliculus, where neurons involved in fear‐like responses are located, reinforce previous suggestions of a role for the IC in generating motor stereotypes that occur during audiogenic seizures. J. Comp. Neurol. 499:716–731, 2006. © 2006 Wiley‐Liss, Inc.

Related Organizations
Keywords

Male, Afferent Pathways, Superior Colliculi, Behavior, Animal, Staining and Labeling, Stilbamidines, Biotin, Dextrans, Immunohistochemistry, Epilepsy, Reflex, Inferior Colliculi, Rats, Rats, Sprague-Dawley, Acetylcholinesterase, Animals, Neurons, Afferent, Cell Shape, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!