Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancerarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://europepmc.org/articles...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer
Article . 2003 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2004 . Peer-reviewed
Data sources: Crossref
Cancer
Article . 2003
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Animal models of bone metastasis

Authors: Thomas J, Rosol; Sarah H, Tannehill-Gregg; Bruce E, LeRoy; Stefanie, Mandl; Christopher H, Contag;

Animal models of bone metastasis

Abstract

Animal models will continue to be indispensable to investigate the pathogenesis of bone metastasis in vivo, conduct preclinical chemotherapeutic, chemoprevention and genetic therapy studies, test gene delivery mechanisms, and identify metastasis suppressor and inducer genes. It is likely that the bone marrow microenvironment, such as the endothelial cells, stromal cells, hematopoietic cells, bone cells, and the intercellular matrix play important roles in the localization and clonal growth of cancer cells in bone. Given the complexity of bone metastasis, many genes are expected to be involved in the pathogenesis and few are likely indispensable. The use of genomic and proteomic approaches to study these animal models will identify key targets for therapeutic intervention. As we further refine these models and use imaging for real-time evaluation of cells, and eventually target genes, these models will more closely mirror human disease and will hopefully become more predictive of the human response to therapy.

Related Organizations
Keywords

Male, Lung Neoplasms, Mammary Neoplasms, Experimental, Prostatic Neoplasms, Bone Neoplasms, Breast Neoplasms, Kidney Neoplasms, Rats, Radiography, Mice, Disease Models, Animal, Dogs, Luminescent Measurements, Tumor Cells, Cultured, Animals, Humans, Female, Multiple Myeloma, Carcinoma, Renal Cell, Neoplasm Transplantation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    225
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
225
Top 10%
Top 1%
Top 1%
bronze