
AbstractAdiabatic radio frequency (RF) pulses are in widespread use in biomedical magnetic resonance imaging and spectroscopy. The primary advantage of adiabatic pulses is that provided the condition for adiabaticity is satisfied they can be made insensitive to inhomogeneities in the RF field. In this pedagogical article the principles of adiabatic fast passage (AFP) are explained, and the use of AFP to invert both stationary and flowing spin systems is examined. The hyperbolic secant pulse is presented as a pulse capable of performing slice selective adiabatic inversion. Lower power alternatives to this pulse are described, and the principle of offset independent constant adiabaticity is elucidated. Instantaneous reversal of the orientation of the effective RF field as a means of producing excitation and refocusing pulses is presented, as are methods of obtaining slice selective excitation with these pulses. © 2002 Wiley Periodicals, Inc. Concepts Magn Reson 2: 89–101, 2002
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
