Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Canadian Journal...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Canadian Journal of Chemical Engineering
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2020
Data sources: PolyPublie
versions View all 2 versions
addClaim

Experimental methods in chemical engineering: Electron paramagnetic resonance spectroscopy‐EPR/ESR

Authors: Martin G. Bakker; Benjamin Fowler; Michael K. Bowman; Gregory S. Patience;

Experimental methods in chemical engineering: Electron paramagnetic resonance spectroscopy‐EPR/ESR

Abstract

SummaryElectron paramagnetic resonance (EPR) spectroscopy, also known as electron spin resonance spectroscopy (ESR), utilizes absorption of microwave radiation by unpaired electrons in a magnetic field. The interaction between the unpaired electron(s) and nearby magnetic nuclei helps identify paramagnetic species and can provide information about the motion of the molecule and the local polarity, pH, viscosity, concentration, and accessibility to other paramagnetic species. This mini‐review discusses the fundamental underpinnings of EPR needed to correctly interpret EPR spectra. We describe various types of EPR spectra encountered by chemical engineers, and use application examples drawn from the chemical engineering literature to illustrate the information available from the technique. Few chemical engineering departments or even chemistry departments have EPR instruments, which contributes to the significant barrier that prevents this being adopted as a routine measurement technique. However, in 2016 and 2017, Web of Science indexed 7000 articles that applied EPR spectroscopy. A bibliometric map categorized the keywords in four categories based on co‐occurrences: magnetic properties, films, and luminescence; crystal structure, complexes, and ligands; nanoparticles, oxidation, and degradation; and, systems, radicals, and H2O2.

Country
Canada
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!