Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isocyanide in Biochemistry? A Theoretical Investigation of the Electronic Effects and Energetics of Cyanide Ligand Protonation in [FeFe]‐Hydrogenases

Authors: GRECO, CLAUDIO; BRUSCHI, MAURIZIO; FANTUCCI, PIERCARLO; Ryde, U; DE GIOIA, LUCA;

Isocyanide in Biochemistry? A Theoretical Investigation of the Electronic Effects and Energetics of Cyanide Ligand Protonation in [FeFe]‐Hydrogenases

Abstract

AbstractThe presence of Fe‐bound cyanide ligands in the active site of the proton‐reducing enzymes [FeFe]‐hydrogenases has led to the hypothesis that such Brønsted–Lowry bases could be protonated during the catalytic cycle, thus implying that hydrogen isocyanide (HNC) might have a relevant role in such crucial microbial metabolic paths. We present a hybrid quantum mechanical/molecular mechanical (QM/MM) study of the energetics of CN− protonation in the enzyme, and of the effects that cyanide protonation can have on [FeFe]‐hydrogenase active sites. A detailed analysis of the electronic properties of the models and of the energy profile associated with H2 evolution clearly shows that such protonation is dysfunctional for the catalytic process. However, the inclusion of the protein matrix surrounding the active site in our QM/MM models allowed us to demonstrate that the amino acid environment was finely selected through evolution, specifically to lower the Brønsted–Lowry basicity of the cyanide ligands. In fact, the conserved hydrogen‐bonding network formed by these ligands and the neighboring amino acid residues is able to impede CN− protonation, as shown by the fact that the isocyanide forms of [FeFe]‐hydrogenases do not correspond to stationary points on the enzyme QM/MM potential‐energy surface.

Country
Italy
Keywords

Iron-Sulfur Proteins, Models, Molecular, Molecular Structure, Hydrogen Bonding, density functional calculations; hydrogenases; isocyanide ligands; protonation; QM/MM methods;, Ligands, Hydrogenase, density functional calculations; hydrogenases; isocyanide ligands; protonation; QM/MM methods, Nitriles, Thermodynamics, Desulfovibrio desulfuricans, Protons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!