Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sonication‐Triggered Instantaneous Gel‐to‐Gel Transformation

Authors: Qi Wang; Junchen Wu; Song Zhang; Liming Chen; Mingming Zhang; Xudong Yu; Qian Liu; +2 Authors

Sonication‐Triggered Instantaneous Gel‐to‐Gel Transformation

Abstract

AbstractTwo new peptide‐based isomers containing cholesterol and naphthalic groups have been designed and synthesized. We found that the position of L‐alanine in the linker could tune the gelation properties and morphologies. The molecule with the L‐alanine residue positioned in the middle of the linker (1 b) shows better gelation behavior than that with L‐alanine directly linked to the naphthalimido moiety (1 a). As a result, a highly thermostable organogel of 1 b with a unique core–shell structure was obtained at high temperature and pressure in acetonitrile. Moreover, the gels of 1 a and 1 b could undergo an instantaneous gel‐to‐gel transition triggered by sonication. Ultrasound could break the core–shell microsphere of 1 b and the micelle structure of 1 a into entangled fibers. By studying the mechanism of the sonication‐triggered gel‐to‐gel transition process of these compounds, it can be concluded that ultrasound has a variety of effects on the morphology, such as cutting, knitting, unfolding, homogenizing, and even cross‐linking. Typically, ultrasound can cleave and homogenize π‐stacking and hydrophobic interactions among the gel molecules and then reshape the morphologies to form a new gel. This mechanism of morphology transformation triggered by sonication might be attractive in the field of material storage and controlled release.

Related Organizations
Keywords

Models, Molecular, Sonication, Alanine, Cholesterol, Molecular Structure, Microscopy, Electron, Scanning, Naphthalenes, Peptides, Gels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Top 10%
Top 10%
Top 1%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!