Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Silylmetalation of Alkenes

Authors: Shinji, Nakamura; Mitsuhiro, Yonehara; Masanobu, Uchiyama;
Abstract

AbstractSilylmetalation of alkenes is challenging due to the low reactivity of the substrates. In contrast, carbometalation of alkenes has been realized through several innovative methods, including activation of the reagent and the substrate. A similar approach could be applicable to silylmetalation of alkenes, and we have recently developed a bimetal activation method using zincate complexes for this purpose. Here, we describe how the silylzincation of alkenes was achieved. First, the strategies for carbometalation of alkenes will be summarized. Secondly, the history and development of silylzincation chemistry are briefly described. Then the details of our findings related to two types of silylzincation of alkenes, as well as recent progress in mechanistic studies, are discussed. The key point in the silylzincation of alkenes proved to be the bimetal activation of the substrate. One metal (copper or titanium) strongly coordinates and activates the alkene moiety, and the other metal (zinc) acts as the electron acceptor from the silyl group by way of the alkene moiety. This dual activation concept is expected to be applicable to other combinations of metals, as well as to new types of reactions.

Related Organizations
Keywords

Zinc, Organometallic Compounds, Alkenes, Catalysis, Copper, Styrene

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!