Views provided by UsageCounts
AbstractStoichiometric chrysotile tubular nanocrystals have been synthesized as possible starting materials for applications toward nanotechnology, and as a standard reference sample for the investigation of the molecular interactions between chrysotile, the most utilized asbestos, and biological systems. Chrysotile nanocrystals have been synthesized under controlled hydrothermal conditions, and have been characterized by chemical, morphological, structural, spectroscopic and microcalorimetric analyses. They show a constant “cylinder‐in‐cylinder” morphology constituted by two or three concentric subunits. Each single nanocrystal has a tubular shape of about 49±1 nm in outer maximum diameter, and a hollow core of about 7±1 nm. Structural investigation carried out on an X‐ray powder pattern allowed to improve the structural model proposed for chrysotile mineral samples. Synthetic chrysotile crystallizes in the monoclinic Cc space group with a=0.5340(1) nm, b=0.9241(1) nm, and c=1.4689(2) nm, β=93.66(3)°.
nanotube; asbestos; electron microscopy; diffraction
nanotube; asbestos; electron microscopy; diffraction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 124 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 133 |

Views provided by UsageCounts