
pmid: 28009088
AbstractThe efficiency of protein chemical modification on tyrosine residues with N‐methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H2O2, oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N‐methylluminol derivatives with a minimum amount of H2O2 prevented the occurrence of oxidative side reactions under HRP‐catalyzed conditions. As probes for HRP‐catalyzed protein modification, N‐methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β‐nicotinamide adenine dinucleotide (NADH, H2O2‐free conditions).
Models, Molecular, Binding Sites, Molecular Structure, Tyrosine, Click Chemistry, Heme, Hydrogen Peroxide, Catalysis, Horseradish Peroxidase
Models, Molecular, Binding Sites, Molecular Structure, Tyrosine, Click Chemistry, Heme, Hydrogen Peroxide, Catalysis, Horseradish Peroxidase
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
