Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell Biochemistry an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Biochemistry and Function
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons

Authors: Takashi, Hashimoto; Shohei, Maekawa; Seiji, Miyata;

IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons

Abstract

AbstractIgLON cell adhesion molecules (CAMs) belonging to the immunoglobulin superfamily comprise of LAMP, neurotrimin (Ntm), OBCAM, and Kilon. In the present study, we performed the single and double transfection of IgLON gene constructs into hippocampal neurons in vitro and evaluated synaptic number. The quantitative analysis showed that the single over‐expression of LAMP or OBCAM increased synaptic number, while the over‐expression of Kilon reduced synaptic number and Ntm had no effects. The double over‐expression of Kilon‐Ntm, Kilon‐OBCAM, LAMP‐Ntm, and Ntm‐OBCAM decreased synaptic number and that of Kilon‐LAMP and LAMP‐OBCAM had no effect. These results suggest that IgLON CAMs participate in regulating synapse formation in hippocampal neurons. Copyright © 2009 John Wiley & Sons, Ltd.

Keywords

Neurons, Cell Adhesion Molecules, Neuronal, Organogenesis, Dendrites, Transfection, Hippocampus, Rats, Synapses, Animals, Rats, Wistar, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!