Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemistry and Mol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemistry and Molecular Biology Education
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reversible ligand binding reactions: Why do biochemistry students have trouble connecting the dots?

Authors: Duane W, Sears; Scott E, Thompson; S Robin, Saxon;

Reversible ligand binding reactions: Why do biochemistry students have trouble connecting the dots?

Abstract

AbstractAdaptive chemical behavior is essential for an organism's function and survival, and it is no surprise that biological systems are capable of responding both rapidly and selectively to chemical changes in the environment. To elucidate an organism's biochemistry, its chemical reactions need to be characterized in ways that reflect the normal physiology in vivo. This is a challenging experimental problem because biological systems are inherently complex with myriads of interlinked chemical networks orchestrating processes that are mostly irreversible in nature. One successful approach for simplifying the study of biochemical reactions is to analyze them under controlled reversible equilibrium conditions in vitro that approximate the range of physiological conditions found in vivo. Because this approach has helped elucidate some of the chemical mysteries of complex biological systems, many topics presented in modern biochemistry courses are essentially rooted in the chemistry of reversible equilibrium reactions. Since most undergraduate biochemistry courses typically require students to complete year‐long general and organic chemistry courses, biochemistry instructors may assume that entering students have sufficient understanding of basic reversible equilibrium chemistry to move forward into more advanced biochemical topics. However, this assumption is at odds with our experience in that many entering students seem confused by the conventions, language, symbolic formalism, and/or mathematical tools normally use to describe reversible equilibrium reactions. Part of the problem here may stem from how certain basic chemical concepts are taught (or are not taught) in their prerequisite chemistry courses. Here, we identify some conceptual barriers that many students seem to confront and we discuss instructional strategies designed to help students “connect the dots,” so to speak, and better understand how dynamic biological processes can be analyzed in terms of reversible equilibrium chemistry.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!