
pmid: 18584733
AbstractBatch foam separation has been employed to separate Saccharomyces carlsbergensis cells from their broth without the use of any external surface‐active agent. A model has been developed to predict the foamate cell concentration as well as the variation of cell concentration in the bulk liquid in the foam column as a function of time. The model assumes a linear equilibrium relation between the cell concentrations at the interface and the bulk. The foam has interface as well as interstitial liquid. The interface is assumed to be in equilibrium with the interstitial liquid, which in turn is assumed to have the same concentration as the bulk. The interfacial area is calculated by assuming the foam bubbles to be pentagonal dodecahedral in shape. The model has been found to explain the results of foam separation of cells quite well, particularly with respect to the effect of bubble size and aeration rate.
Microbiology & Cell Biology, Chemical Engineering
Microbiology & Cell Biology, Chemical Engineering
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
