Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotechnology and Bi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology and Bioengineering
Article . 1973 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Penicillin amidase production by bacillus megaterium

Authors: F, Acevedo; C L, Cooney;

Penicillin amidase production by bacillus megaterium

Abstract

AbstractPenicillin amidase, an enzyme which hydrolyzes benzylpenicillin to 6‐aminopenicillanic acid and phenylacetic acid, is produced by Bacillus megaterium ATCC 14945 as an extracellular enzyme. We used this system as a model to examine the effects of nitrogen, sulfur, and phosphorous limitation on enzyme production in continuous culture. For these studies, we developed a minimal medium for B. megaterium which contained histidine as the sole nitrogen source. Batch experiments showed that this enzyme is produced as a growth‐associated metabolite. Enzyme production was shown to be a function of the growth‐limiting conditions and the concentration of the inducer, phenylacetic acid. Sulfur limitation in continuous culture yielded enzyme activities approximately three to five times those observed in nitrogen‐ and phosphorous‐limited chemostats. These results are discussed in terms of the environment's influence on enzyme production in continuous culture.

Related Organizations
Keywords

Nitrogen, Penicillanic Acid, Phosphorus, Penicillins, Amidohydrolases, Culture Media, Kinetics, Enzyme Induction, Bacillus megaterium, Sulfur, Phenylacetates

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!