
doi: 10.1002/bit.22838
pmid: 20552664
AbstractRecent studies have shown that a number of glycoside hydrolase families do not follow the classical catalytic mechanisms, as they lack a typical catalytic base/nucleophile. A variety of mechanisms are used to replace this function, including substrate‐assisted catalysis, a network of several residues, and the use of non‐carboxylate residues or exogenous nucleophiles. Removal of the catalytic base/nucleophile by mutation can have a profound impact on substrate specificity, producing enzymes with completely new functions. Biotechnol. Bioeng. 2010;107: 195–205. © 2010 Wiley Periodicals, Inc.
Models, Molecular, Bacteria, Glycoside Hydrolases, Models, Chemical, Humans, Protein Structure, Tertiary, Substrate Specificity
Models, Molecular, Bacteria, Glycoside Hydrolases, Models, Chemical, Humans, Protein Structure, Tertiary, Substrate Specificity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 98 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
