
doi: 10.1002/bit.22129
pmid: 19031428
AbstractShewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and freshwater environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal medium with [3‐13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23–0.29 h−1) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo‐steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636–640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate. Biotechnol. Bioeng. 2009;102: 1161–1169. © 2008 Wiley Periodicals, Inc.
Carbon Isotopes, Shewanella, Bacteria, Maintenance, Fresh Water, Acetates, Carbon, Culture Media, Metabolism, Pyruvic Acid, Genetics, Lactates, 09, Lactic Acid, Flexibility, Regulations, Acetic Acid
Carbon Isotopes, Shewanella, Bacteria, Maintenance, Fresh Water, Acetates, Carbon, Culture Media, Metabolism, Pyruvic Acid, Genetics, Lactates, 09, Lactic Acid, Flexibility, Regulations, Acetic Acid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
