Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biopolymersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biopolymers
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Biopolymers
Article . 2019
versions View all 2 versions
addClaim

Peptoids as tools and sensors

Authors: Adrian S. Culf;

Peptoids as tools and sensors

Abstract

AbstractA review of molecular tools and sensors assembled onN‐substituted glycine, or α‐peptoid, oligomers between 2013 and November 2018 with the following sections: (a) Peptoids as crystal growth modifiers, (b) Peptoids as catalysts, (c) Ion and molecule sequestration and transport, (d) Peptoid sensors, (e) Macromolecule recognition, (f) Cellular transporters, (g) Medical imaging, (h) Future direction and (i) Summary and outlook. Peptoids are a promising class of peptide mimic making them an excellent platform for functional molecule preparation. Attributes of peptoid oligomers include: (a) the ease of precise sequence definition and mono‐dispersity; (b) access to a vast chemical space within simple and repeating chemical preparative steps and (c) thermal, chemical and biological stability all lending support for their application in a number of areas, with some that have been realised to date. The peptoid tool and sensor examples selected have realised practical utility. They serve to illustrate the rapidity of new insight that can generate in many disparate areas of science and technology, enabling the quick assembly of design criteria for efficient peptoid molecular tools and sensors.

Keywords

Peptoids, Neoplasms, Positron-Emission Tomography, Animals, Biological Transport, Biosensing Techniques, Crystallization, Catalysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!