Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biopolymersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biopolymers
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biopolymers
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Biopolymers
Article . 2016
versions View all 2 versions
addClaim

Interactions of amelogenin with phospholipids

Authors: Sowmya Bekshe, Lokappa; Karthik Balakrishna, Chandrababu; Kaushik, Dutta; Iva, Perovic; John Spencer, Evans; Janet, Moradian-Oldak;

Interactions of amelogenin with phospholipids

Abstract

ABSTRACTAmelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (∼334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS‐bound‐phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 96–108, 2015.

Related Organizations
Keywords

Spectrometry, Fluorescence, Amelogenin, Protein Conformation, Circular Dichroism, Scattering, Radiation, Hydrogen-Ion Concentration, Phospholipids, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
bronze