Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biopolymersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biopolymers
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Biopolymers
Article . 2011
versions View all 2 versions
addClaim

Peptide–glycosaminoglycan cluster formation involving cell penetrating peptides

Authors: Anthony, Rullo; Jieshu, Qian; Mark, Nitz;

Peptide–glycosaminoglycan cluster formation involving cell penetrating peptides

Abstract

AbstractGlycosaminoglycans (GAGs) affect the efficiency of cellular uptake of a wide range of cell penetrating peptides (CPPs). GAGs have been proposed to cluster with CPPs at the cell surface before uptake but little is known about the formation or stability of CPP–GAG clusters. Here we apply a combination of heparin affinity chromatography, dynamic light scattering, and fluorescence spectroscopy to characterize the formation, stability, and size of the clusters formed between CPPs and heparin. Under conditions similar to those used in cell uptake experiments the CPP, penetratin (Antp), was observed to form significantly more stable clusters with heparin than the CPP TAT, despite TAT showing a comparable affinity for heparin. This difference in cluster stability may explain the origins of the preferred cell uptake pathways followed by Antp and TAT, and may be an important parameter for optimizing the efficiency of designed CPP delivery vectors. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 722–731, 2011.

Related Organizations
Keywords

Light, Heparin, Macromolecular Substances, Protein Stability, Molecular Sequence Data, Cell-Penetrating Peptides, Spectrometry, Fluorescence, Gene Products, tat, Scattering, Radiation, Amino Acid Sequence, Carrier Proteins, Peptides, Glycosaminoglycans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!