Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biopolymersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biopolymers
Article . 1968 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Biopolymers
Article . 1968
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rheology of hyaluronic acid

Authors: E. W. Merrill; D. A. Gibbs; K. A. Smith; Endre A. Balazs;

Rheology of hyaluronic acid

Abstract

AbstractThe dynamic viscoelastic properties of hyaluronic acid solutions have been measured over the frequency range 0.02–1.67 cps. The effects of varying temperature, hyaluronic acid concentration, pH, and ionic strength on the dynamic shear moduli were studied. The solutions exhibited a sharp transition from viscous to elastic behavior as the strain frequency increased. No entanglement coupling of the hyaluronic acid molecules was evident over the concentration range 2.0–4.0 mg./ml. Solutions at pH 2.5 showed a pronounced elastic behavior relative to both higher and lower pH's. This effect was attributed to a stiffening of the hyaluronic acid molecule at this pH.

Related Organizations
Keywords

Chemical Phenomena, Chemistry, Physical, Viscosity, Humans, Hyaluronic Acid, Rheology, Elasticity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    283
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
283
Top 1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!