
doi: 10.1002/bio.1377
pmid: 22238226
ABSTRACTThe direct effects of the four catecholamines (CATs), adrenaline (A), noradrenaline (NA), dopamine (D) and isoproterenol (I), on free radicals were investigated using the free radical 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH•) and hydroxyl radial (HO•). The CATs examined were found to inhibit the ESR signal intensity of DPPH• in a dose‐dependent manner over the range 0.1–2.5 mmol/L in the following order: NA > A > I > D, with IC50 = 0.30 ± 0.03 for noradrenaline and IC50 = 0.86 ± 0.02 for dopamine. Hydroxyl radicals were produced using a Fenton reaction in the presence of the spin trap 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO), and ESR technique was applied to detect the CATs reactivity toward the radicals. The reaction rates constant (kr) of CATs with HO• were found to be in the order of 109 L/mol/s, and the kr value for noradrenaline was the highest (kr = 8.4 × 109 L/mol/s). The CATs examined exhibited also a strong decrease in the light emission (62–73% at 1 mmol/L concentration and 79–89% at 2 mmol/L concentration) from a Fenton‐like reaction. These reactions may be relevant to the biological action of these important polyphenolic compounds. Copyright © 2012 John Wiley & Sons, Ltd.
Inhibitory Concentration 50, Catecholamines, Dose-Response Relationship, Drug, Picrates, Hydroxyl Radical, Biphenyl Compounds, Electron Spin Resonance Spectroscopy, Free Radical Scavengers
Inhibitory Concentration 50, Catecholamines, Dose-Response Relationship, Drug, Picrates, Hydroxyl Radical, Biphenyl Compounds, Electron Spin Resonance Spectroscopy, Free Radical Scavengers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
