Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
BioEssays
Article . 1997
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Peroxisome biogenesis

Authors: H R, Waterham; J M, Cregg;
Abstract

AbstractPeroxisomes are eukaryotic organelles that are the subcellular location of important metabolic reactions. In humans, defects in the organelle's function are often lethal. Yet, relative to other organelles, little is known about how cells maintain and propagate peroxisomes or how they direct specific sets of newly synthesized proteins to these organelles (peroxisome biogenesis/assembly). In recent years, substantial progress has been made in elucidating aspects of peroxisome biogenesis and in identifying PEX genes whose products, peroxins, are essential for one or more of these processes. The most progress has been made in understanding the mechanism by which peroxisome matrix proteins are imported into the organelles. Signal sequences responsible for targeting proteins to the organelle have been defined. Potential signal receptor proteins, a receptor docking protein and other components of the import machinery have been identified, along with insights into how they operate. These studies indicate that multiple peroxisomal protein‐import mechanisms exist and that these mechanisms are novel, not simply variations of those described for other organelles.

Keywords

Membrane Lipids, Yeasts, Biological Transport, Active, Humans, Membrane Proteins, Proteins, Receptors, Cell Surface, Carrier Proteins, Microbodies, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!