
pmid: 7980482
AbstractConsiderable information about the process of premRNA splicing has accmulated, but the mechanism by which highly accurate splicing is achieved is unresolved. Fifteen years ago we proposed that accuracy in splicing might depend on small RNA molecules (splicer RNAs) which hybridise across adjacent exon termini, or intron termini. Gene expression, including alternative splicing, could be controlled by the transcription of specific splicer RNA genes. We re‐assess our model here, in the light of subsequent developments.
Alternative Splicing, Genes, Models, Genetic, RNA Splicing, RNA Precursors, Animals, Humans, Exons, Introns
Alternative Splicing, Genes, Models, Genetic, RNA Splicing, RNA Precursors, Animals, Humans, Exons, Introns
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
