Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 1993
versions View all 2 versions
addClaim

The Spliceosome

Authors: Lamond, Angus I.;

The Spliceosome

Abstract

AbstractThe spliceosome is a large RNA‐protein complex that catalyses the removal of introns from nuclear pre‐mRNA. A wide range of biochemical and genetical studies shows that the spliceosome comprises three major RNA‐protein subunits, the U1, U2 and [U4/U6.U5] small nuclear ribonucleoprotein particles (snRNPs), and an additional group of non‐snRNP protein splicing factors. Rapid progress is being made in unravelling the interactions which take place between these factors during the splicing reaction. The emerging picture of the spliceosome reveals a highly dynamic structure that assembles on pre‐mRNA transcripts in a stepwise pathway and is organised, at least in part, by complex RNA base‐pairing interactions between the small nuclear RNAs (snRNAs) and the intron substrate. Many of these interactions can be detected both in mammalian and yeast spliceosomes, suggesting that the basic splicing mechanism is an ancient one that has been highly conserved during evolution.

Country
United Kingdom
Related Organizations
Keywords

570, Base Composition, /dk/atira/pure/subjectarea/asjc/1300/1300, Base Sequence, RNA Splicing, Molecular Sequence Data, Ribonucleoproteins, Small Nuclear, Introns, RNA, Small Nuclear, name=General Biochemistry,Genetics and Molecular Biology, Consensus Sequence, RNA Precursors, Spliceosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!