
pmid: 2673231
AbstractAt anaphase chromosomes move to the spindle poles (anaphase A) and the spindle poles move apart (anaphase B). In vitro studies using isolated diatom spindles demonstrate that the primary mechano‐chemical event responsible for spindle elongation is the sliding apart of half‐spindle microtubules. Further, these forces are generated within the zone of microtubule overlap in the spindle midzone.
Eukaryota, Spindle Apparatus, Anaphase, Microtubules
Eukaryota, Spindle Apparatus, Anaphase, Microtubules
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
