
arXiv: 1112.1512
AbstractBow shocks can be formed around planets due to their interaction with the coronal medium of the host stars. The net velocity of the particles impacting on the planet determines the orientation of the shock. At the Earth's orbit, the (mainly radial) solar wind is primarily responsible for the formation of a shock facing towards the Sun. However, for close‐in planets that possess high Keplerian velocities and are frequently located at regions where the host star's wind is still accelerating, a shock may develop ahead of the planet. If the compressed material is able to absorb stellar radiation, then the signature of bow shocks may be observed during transits. Bow‐shock models have been investigated in a series of papers (Llama et al. 2011; Vidotto et al. 2010, 2011a,b) for known transiting systems. Once the signature of a bow‐shock is observed, one can infer the magnetic field intensity of the transiting planet. Here, we investigate the potential to use this model to detect magnetic fields of (hypothetical) planets orbiting inside the habitable zone of M‐dwarf stars. For these cases, we show, by means of radiative transfer simulations, that the detection of bow‐shocks of planets surrounding M‐dwarf stars may be more difficult than for the case of close‐in giant planets orbiting solar‐type stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
