
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractFluorescent indicators that respond to changes in biological membrane potentials provide a powerful complement to existing methods for monitoring neuronal activity. Indicators that absorb and emit in the near infrared window are especially attractive, since lower energy wavelengths excite fewer biological molecules and can penetrate more deeply into biological tissues. In this work, we incorporate sulfone rhodamine chromophores into a voltage‐sensitive scaffold in order to generate voltage sensitive fluorophores which absorb and emit above 700 nm. These Sulfone Rhodamine Voltage Reporters (SuRhoVRs) partition into cell membranes and display good sensitivity to membrane potential changes. The most sensitive SuRhoVR derivative also displays excellent photostability and can track membrane potential changes in dissociated rat hippocampal neurons.
Diagnostic Imaging, Rhodamines, Animals, Sulfones, Rats, Fluorescent Dyes
Diagnostic Imaging, Rhodamines, Animals, Sulfones, Rats, Fluorescent Dyes
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
