
doi: 10.1002/asi.10025
AbstractIn this paper, we develop a new model for a process that generates Lotka's Law. We show that four relatively mild assumptions create a process that fits five different informetric distributions: rate of production, career duration, randomness, and Poisson distribution over time, as well as Lotka's Law. By simulation, we obtain good fits to three empirical samples that exhibit the extreme range of the observed parameters. The overall error is 7% or less. An advantage of this model is that the parameters can be linked to observable human factors. That is, the model is not merely descriptive, but also provides insight into the causes of differences between samples. Furthermore, the differences can be tested with powerful statistical tools.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
