
doi: 10.1002/arch.21893
pmid: 35388481
AbstractGlyphosate‐based herbicide Roundup, as the most employed herbicide used for multiple purposes in agriculture, adversely affects nontarget organisms. We tested the effects of Roundup applied at larval and adult stages. Roundup caused developmental delay and increased larvae mortality. Roundup treatment reduced hemolymph glucose and glycogen levels in adult flies of both sexes at the highest concentration tested. Sex‐dependent diverse effects were found in catalase and Cu,Zn superoxide dismutase (Cu,Zn‐SOD) activities. Decreased aconitase activity, contents of thiols, and lipid peroxides were found after larval Roundup exposure. Furthermore, chronic exposure to adult flies decreased appetite, body weight, and shortened lifespan. Thus, our results suggest that high concentrations of Roundup are deleterious to both larvae and adults, resulting in a shift of the metabolism and antioxidant defense system in Drosophila melanogaster.
Male, Oxidative Stress, Drosophila melanogaster, Herbicides, Larva, Animals, Drosophila, Female, Antioxidants
Male, Oxidative Stress, Drosophila melanogaster, Herbicides, Larva, Animals, Drosophila, Female, Antioxidants
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
