Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Polymer Science
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Cure cycle optimization of infrared cured composites using Taguchi method

Authors: Yakup O. Alpay; İlyas Uygur; Mert Kılınçel; Gürcan Samtaş;

Cure cycle optimization of infrared cured composites using Taguchi method

Abstract

AbstractKnowing that cure cycle has a significant effect on the mechanical properties of the composite materials, determining the effects of cure cycle parameters – such as heating rate, maximum temperature, and dwell time, has gain importance. This study addresses the optimum cure cycle of an infrared cured carbon fiber pre‐preg material. An infrared oven equipped with 1 kW halogen infrared heating unit and vacuum system was used. Different cure cycles determined by means of Taguchi experiment design approach and a cure cycle was found maximizing the tensile strength of the material. Results showed that infrared curing is a strong alternative to the autoclave despite its shortcomings regarding the product geometry. The optimized cure cycle showed 23% increase in the tensile strength comparing the tested cure cycle which is resulted with the minimum tensile strength. Besides, comparing the specimens cured with the optimum cure cycle, the infrared cured specimens showed slightly higher tensile strength than the autoclave cured counterparts. According to Taguchi optimization, optimum values for maximum tensile strength were found as 10°C/min, 130°C for heating rate and 60 min for plateau time. According to the analysis of variance, the most effective parameter affecting the tensile strength was the heating rate.

Country
Turkey
Related Organizations
Keywords

Behavior, infrared curing, Multiobjective Optimization, cure cycle optimization, Mechanical-Properties, Taguchi approach, Carbon, Curing Process, Interlaminar Shear-Strength, Process Parameters, out of autoclave composite curing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!