
doi: 10.1002/app.25713
handle: 11568/111344
AbstractThe viscoelastic nonlinear behavior of several base and polymer modified asphalts (PMA) has been studied in step‐strain experiments. The polymers were poly(styrene‐b‐butadiene‐b‐styrene), poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene), poly(ethylene‐r‐vinylacetate) copolymers, and a linear low density poly(ethylene), which were chosen as representatives of the main categories of asphalt modifiers. Because of the complexity of the morphological structure of these materials, the relaxation modulus has only partial and qualitative similarities with that of melt or high concentrated solutions of entangled polymeric liquids. No time strain separability can be applied, and the relaxation experiments are conveniently described by means of the memory functions. These have been calculated both via a parametric fitting procedure and by interpolation algorithms. Results are presented, and a correlation between the PMA structure and the corresponding memory function is proposed for the investigated materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2330–2340, 2007
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
