Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Angewandte Chemie In...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Angewandte Chemie International Edition
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Angewandte Chemie
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4‐specific LPS Mimetics with Picomolar Potency

Authors: Sebastian Strobl; Daniele Zucchetta; Tomáš Vašíček; Alessandro Monti; Alessandro Ruda; Göran Widmalm; Holger Heine; +1 Authors

Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4‐specific LPS Mimetics with Picomolar Potency

Abstract

AbstractInnate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)‐mediated inflammation, including upregulation of various transcription factors and the activation of pro‐inflammatory pathways important for immune surveillance. Dysfunction of PRRs‐mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs‐driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure‐based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll‐like Receptor 4 (TLR4). Taking advantage of an exo‐anomeric conformation and specific molecular shape of synthetic nonreducing β,β‐diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro‐inflammatory signaling. Stereoselective 1,1′‐glycosylation towards fully orthogonally protected nonreducing GlcNβ(1↔1′)βGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4‐specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant‐ and immunotherapy candidates, while anionic glycolipids with TLR4‐inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.

Keywords

Toll-Like Receptor 4, Lipopolysaccharides, Humans, Immunologic Factors, Glycolipids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
hybrid