
pmid: 36647212
AbstractWe demonstrate a general strategy for the synthesis of ordered bicontinuous‐structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm m) and average mesopore diameters of 60–65 nm. Mechanism study reveals that the formation of ZIF‐8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10−4, indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF‐8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
