
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractIn dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent‐bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis. We describe the discovery of dynamic covalent enantioselective metal‐complex‐catalyzed 1,3‐dipolar cycloaddition reactions. We have developed a stereodivergent tandem synthesis of structurally and stereochemically complex molecules that generates eight stereocenters with high diastereo‐ and enantioselectivity through asymmetric reversible bond formation in a dynamic process in two consecutive Ag‐catalyzed 1,3‐dipolar cycloadditions of azomethine ylides with electron‐poor olefins. Time‐dependent reversible dynamic covalent‐bond formation gives enantiodivergent and diastereodivergent access to structurally complex double cycloadducts with high selectivity from a common set of reagents.
Research Articles
Research Articles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
