
pmid: 29485246
AbstractMolar mass distributions are of high interest in macromolecular chemistry because they directly determine the physical and chemical properties of polymers. A principal approach to obtain and control the shape of broad molar mass distributions is adjusting the initiator concentration in free radical polymerizations. A controlled gradient of the initiator concentration should potentially lead to tailored molar mass distributions. Here we use analytical ultracentrifugation (AUC) to adjust and measure a macroinitiator's concentration gradient. Subsequent photopolymerization of a uniformly distributed monomer leads to desired chain length distributions. Resulting distributions are described and calculated by a Schulz–Flory approach. The desired concentration profiles are simulated in advance and can be detected anytime by the optical systems in the centrifuge. Therefore, tailored broad molar mass distributions can now be produced using predictions from simulations using the established theory of AUC.
info:eu-repo/classification/ddc/540
info:eu-repo/classification/ddc/540
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
