<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 26094605
AbstractMicrotubules are regulated by microtubule‐associated proteins. However, little is known about the structure of microtubule‐associated proteins in complex with microtubules. Herein we show that the microtubule‐associated protein Tau, which is intrinsically disordered in solution, locally folds into a stable structure upon binding to microtubules. While Tau is highly flexible in solution and adopts a β‐sheet structure in amyloid fibrils, in complex with microtubules the conserved hexapeptides at the beginning of the Tau repeats two and three convert into a hairpin conformation. Thus, binding to microtubules stabilizes a unique conformation in Tau.
Amyloid, Protein Folding, Magnetic Resonance Spectroscopy, Protein Conformation, chemistry [tau Proteins], tau Proteins, Microtubules, chemistry [Amyloid], Humans, chemistry [Microtubules], ddc: ddc:540
Amyloid, Protein Folding, Magnetic Resonance Spectroscopy, Protein Conformation, chemistry [tau Proteins], tau Proteins, Microtubules, chemistry [Amyloid], Humans, chemistry [Microtubules], ddc: ddc:540
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 124 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |