Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Neurology
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Neurology
Article . 2022
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2022
Data sources: HAL-CEA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2023 . Peer-reviewed
Data sources: Research.fi
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Network Effects of Brain Lesions Causing Central Poststroke Pain

Authors: Kim, Na Young; Taylor, Joseph; Kim, Yong Wook; Borsook, David; Joutsa, Juho; Li, Jing; Quesada, Charles; +2 Authors

Network Effects of Brain Lesions Causing Central Poststroke Pain

Abstract

Objective This study was undertaken to test whether lesions causing central poststroke pain (CPSP) are associated with a specific connectivity profile, whether these connections are associated with metabolic changes, and whether this network aligns with neuromodulation targets for pain. Methods Two independent lesion datasets were utilized: (1) subcortical lesions from published case reports and (2) thalamic lesions with metabolic imaging using 18F‐ fluorodeoxyglucose positron emission tomography–computed tomography. Functional connectivity between each lesion location and the rest of the brain was assessed using a normative connectome (n = 1,000), and connections specific to CPSP were identified. Metabolic changes specific to CPSP were also identified and related to differences in lesion connectivity. Therapeutic relevance of the network was explored by testing for alignment with existing brain stimulation data and by prospectively targeting the network with repetitive transcranial magnetic stimulation (rTMS) in 7 patients with CPSP. Results Lesion locations causing CPSP showed a specific pattern of brain connectivity that was consistent across two independent lesion datasets (spatial r = 0.82, p < 0.0001). Connectivity differences were correlated with postlesion metabolism ( r = −0.48, p < 0.001). The topography of this lesion‐based pain network aligned with variability in pain improvement across 12 prior neuromodulation targets and across 32 patients who received rTMS to primary motor cortex ( p < 0.05). Prospectively targeting this network with rTMS improved CPSP in 6 of 7 patients. Interpretation Lesions causing pain are connected to a specific brain network that shows metabolic abnormalities and promise as a neuromodulation target. ANN NEUROL 2022;92:834–845

Keywords

[SDV]Life Sciences [q-bio], Connectome* / methods, Brain / diagnostic imaging, Neuralgia*, 610, Brain, Transcranial Magnetic Stimulation, Magnetic Resonance Imaging, ta3124, [SDV] Life Sciences [q-bio], Transcranial Magnetic Stimulation / methods, Nervous System Diseases*, Fluorodeoxyglucose F18, 616, Connectome, Humans, Neuralgia, Nervous System Diseases, Pain Measurement

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green