
doi: 10.1002/ajpa.70144
ABSTRACT Objectives Bite force has received significant attention in biological anthropology, but maximum bite force estimates for a single primate species often span hundreds of newtons. In this synthesis, we discuss the definitions of maximum bite force, review and highlight the variability in methods used to assess bite force in primates, and compare bite force ranges in macaques to bracket maximum force estimates between physiological and mechanical maxima. Materials and Methods Methods of estimating bite force in primates were gathered from the literature along with published estimates of maximum bite force for macaques ( Macaca sp.). Results Maximum bite force can be defined physiologically or mechanically, and methods of estimating bite force can be grouped as in vivo, muscle‐based, and craniodental within these two definitions. Physiological estimates occur under natural conditions modulated by sensorimotor feedback, whereas mechanical maximum bite forces ignore muscular and neural limitations. Published maximum bite forces for macaques at the molars vary from 127 N to 898 N, a 771 N range. Using a bracketing approach suggested here, we narrow the estimated bite force range at the incisors to 487–503 N and 503–898 N for the molars. Discussion This synthesis emphasizes the need for comparisons between in vivo, muscle‐based, and craniodental bite force methods in living primates. We propose bracketing bite force estimates between physiological and mechanical maxima in order to provide more reliable bite force estimates and improve understanding of how bite force relates to primate functional morphology and feeding ecology.
Synthesis
Synthesis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
