Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Primatology
Article . 1988 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Primate models to study eccrine sweating

Authors: Reynaldo S, Elizondo;

Primate models to study eccrine sweating

Abstract

AbstractThe histochemistry and histology of the eccrine sweat gland in the rhesus monkey (Macaca mulatta) are described. The histochemical distribution and localization of enzymes and substrates are very similar to those found in the human; innervation is cholinergic. Active eccrine glands on the general body surface average 136 glands/cm2. Above the thermal neutral zone (TNZ), sweating is the major avenue for heat loss and the role of panting in dissipating heat is relatively insignificant. The intrahypothalamic administration of prostaglandin E1 (PGE1) suppresses sweating and leads to an increase in core temperature. A linear relation is found between local sweat rates on the general body surface and clamped hypothalamic temperature. Studies also provide direct support for the concept that brain temperature and skin temperature interact additively in the control of sweating in higher primates. The functional characteristics of eccrine sweating in the patas monkey (Erythocebus) are qualitatively similar to those in the rhesus monkey. The patas monkey maintains a relatively constant rectal temperature (37.6–38.4°C) when equilibrated to a wide range of ambient temperaures of 15–40°C. Eccrine sweating is the main effector system for heat dissipation above the TNZ. We emphasize here that evaporative heat loss that is due to sweating is related to both mean skin and mean body temperature and at 40°C is 40% higher than that recorded from the rhesus monkey. These results indicate that the patas monkey, because of its high sweating capacity and other similarities with the human eccrine system, is a most appropriate animal model for comparative studies of eccrine sweat gland function in primates in general.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!